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1. Introduction

A branching process model describes a system of
randomly proliferating particles. The particles considered
might be whole organisms, cells, molecules, individual,
or any other set of objects which are organized into
lineage of reproducing individuals. Branching processes
are often used in infectious disease epidemiology to
approximate the initial stage of an outbreak, where the
depletion of the number of susceptible individuals is
negligible. The particles in a branching process live for a
time and have offspring according to a prescribed
probability distribution. There are many variants of
branching process models. The more famous models are
called Galton Watson (GW) processes. The GW model
describes a population where particles live for exactly
one unit of time (a generation), and at the moment of
death it produces a random number of progeny according
to a prescribed probability distribution. Each of the
first-generation progeny behaves independent of each
other, and acts as the initial particle. It lives for a unit of
time and produces a random number of progeny. Each of
the second-generation progeny behaves in the identical
way, and so forth. From the fact that the life spans of all
particles are identical and equal to 1, it follows that the
process can be mathematically described using a
discrete-time index, identical to the number of successive
generation.[3]
In the theory of branching processes, GW branching
process is a sequence of random variables
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where i are independent, non-negative integer valued
and identically distributed random variables with

distribution 0 1 2kp k     ( ( )i kP k p   ). kp is so
called offspring distribution or reproduction law. nZ

denotes the size of the population in the thn generation
and condition 0 1Z  means that the process starts with
just one particle. The reproduction mean or the mean

number of offspring is defined by
0
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The expected size of the thn generation satisfies
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A generalization of branching processes is when the
distribution of i varies across individuals. For
example, let  be a random variable and also the
conditional random variable   has Poisson
distribution, which is called mixing distribution. A
certain mixture distribution arises when all (or some)
parameters of a distribution vary according to some
probability distribution. Mixed distributions for
branching processes, usually use in many branches of
biology and epidemiology applications. For more details,
see [1, 6]. The main aim of this paper is to compare the
behavior of various types of the mixed distributions in the
GW branching process. In fact, by Monte Carlo
simulation, we want to see whether the Poisson mixed
distributions in branching processes, are ineffective?
Suppose that offspring distribution follow as the mixed
distribution of   , where  is a random variable and
  has Poisson distribution. We choose a situation that

( )E  be the same for all desired distributions. Then we
study the behavior of nZ by the Monte Carlo
simulation, when a particle generates new particles
according to Poisson distribution with parameter .
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2. Monte Carlo Algorithm and Simulation

In this section, using the Monte Carlo simulation, we
approximate the number of particles in thn generation,
means the value of nZ . First, we obtain the value of 
by generating a random number based on a given
distribution and then we generate a random number
according to a Poisson distribution with parameter  , as
a number of offspring for a single particle. Monte Carlo
algorithm for simulation of nZ is as follow:

Monte Carlo Algorithm:
1. Get the variable m as the number of
Markov chains (the number of interactions of the
algorithm).
2. Get the value of n .
3. Get the number of particles in zero
generation 0( )Z .
4. Get the distribution of random variable
 and set it as ( )g  .

5. Set 1k  .
6. Set 1i  .
7. Set 0iZ  .
8. Set 1j  .

9. Generate ̂ according to ( )g  .
10. Generate  according to Poisson

distribution with the parameter ̂ .
11. Set i iZ Z   .
12. Set 1j j  , if 1ij Z  go to step 9.
13. Set 1i i  , if i n go to step 7.
14. Set isum sum Z  , 1k k  , and if
k m go to step 6.
15. Obtain sum k as Monte Carlo
simulation for nZ .

Computational results for variants distributions of  ,
illustrated in table 1. Results in this table obtained for

0 5Z  , 10n  , so we have ( ) 2500nE Z  . The
numbers of employed Markov chains are 1000.

Table 1: Monte Carlo estimation of nZ , where a particle generates its offspring according to a Poisson distribution
whose parameter is determined by ( )g  distribution, such that ( ( )) 2E g   and ( ) 2500nE Z  .

distribution of
( )g 

parameter(s) Monte Carlo
estimation

Poisson P(2) 2580.9
Uniform (1 3)u  2644.2

Binomial B(5,.4) 2486.5
Geometric G(0.5) 2532.6

Exponential exp(2) 2431.7

The obtained results in table 1 show that the generated
particles are independent of mixed distributions. In this
table, we use different mixed distributions in such a way
that the reproduction number be equal to 2. Reproduction
number, 0R , is the expected number of particles
produced by an particle throughout its life. Under general
conditions, if 0 1R  , the branching process becomes
extinct with probability one. But, if 0 1R  , there still
may be a positive probability, say q , that the branching
process becomes extinct.

3. Conclusion

We showed that the Poisson mixed distribution cannot
affect on the number of particles in the thn period and it
must be ignored for further simulations.
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